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patients generate during
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BACKGROUND

* Semantic Feature Analysis (SFA) is an aphasia treatment that
improves naming for trained words and untrained,
semantically-related words.!

* Gravier et al.2 found that the number of patient-generated
features was predictive of naming for both direct training
and generalization.

* Suggests that patient-generated access to semantic features
is important for generalization.

BUT do the types of features generated matter?
OR does diversity in feature generation improve response?

Hypothesis 1: Description (imageability) and personal-
association (salience) categories will be predictive of gains on
all items for both total number and unique number of features.

Hypothesis 2: Effects will depend on whether successful
repeated retrieval (total features) or activated semantic
diversity (unique features) is key.

METHODS

Separate trial-level logistic mixed-effect regression analyses?
for self-generated semantic features for each feature type and
for total and unique features generated.

RESULTS

Question 1: For four feature categories (excluding personal

association), generating more features was related to improved

naming more for trained items than untrained items (table 2.)

 Likelihood ratio* & bayes factor® suggest personal association
features affected direct training and generalization equally.

Question 2: No evidence that the number of unique features
generated in any category was related to naming improvement.

(table 3.)
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DISCUSSION

* Repeated, successful feature retrieval is predictive of
treatment outcomes; greater feature diversity is not.

* Generation of personally-relevant features may be
associated with greater generalization.

* Effect sizes were relatively small.
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PARTICIPANTS
Table 1. Participant Demographics (n = 38)

Mean (sd) Median Range
Age (years) 60.4 (12.4) 63.5 24-78
Education (years) 15.1 (3.3) 14 10- 25
Months post-onset  68.7 (58.7) 57 7-245
Aphasia Severity 52.1(4.5) 51.1 45.3-62.3
Frequency Percentage
Gender Male (Female) 33(5) 86.8 (13.2)
Race W (AA+NA+H) 31(7) 81.6 (18.4)
Handedness Right (Left) 344 89.5 (10.5)

Aphasia Severity = CAT mean T-Score AA = African-American, NA = Native
American, H = Hispanic, W = White

TREATMENT

Feature Types:

Personal Association
Location/Context
Superordinate
Description
Use/Function

ANALYSIS

Outcome measure: naming accuracy at entry and exit.

Fixed Effects: Item-type (treated/untreated), Time (entry/exit), Feature
Generation (with interactions)

Question 1: Total number of features generated

Question 2: Number of unique features generated

Covariate: Severity Random intercepts: participants and items

Likelihood Ratio: Bits of Evidence* -1.97
Given the data, Likelihood of no difference is 4:1
BIC Estimated Bayes Factor>: 32: strong evidence for ‘no difference’

Table 2. Mixed Logistic Model Coefficients for the total number of features per feature category

Location/ . Use N Personal
Context Deseription . FE Superordinate o
Fixed Effects Coef.(se) Cocf (se) Coef.(se)  Coef(se) Cocf (se)
Main effects of time  L3I(11)***  133(11** 132(11%**  L3ICIN*** 12911+

Main effects of condition  -0.68(.12)**  ~T0(12/** -0.67(12)***  -0.69(.12)*** -0.67(.12)"**
Main effects of feature category 022009 0.22(10)*  0.01(09)  0.32(09)**  0.27(09)**
Aphasia Severity  0.53(11)***  0SIC1I*** 056(12)***  0.46(11)***  0.54(10)***
Time*Condition -1.82(21)%%  -1.86(21)¥** -1.84(21)***  -183(21)*** -1.82(21)***
Time*features category  027C1D*  0.46(11)*** 037(I1™*  038(11***  032(11)**

Condition* feature category ~ -017(.12)  -0.22(12)  -0.07(11) -0.17(.12) 0.10(.11)

Time*condition*features category  -43(22)* -0.J8(21)*** 0602 -0.61(22)***  -0.17(22)
Random Effects 52 s B B s?

Participants 30 30 41 28 27

Items 59 61 58 59 58

Note: Excluding intercepts, Coef = estimation of the effect on naming accuracy in log odds, SE = standard
error. * <.05 **<.01***<.001. Personal Association Features Model: Bits of Evidence: 4:1;
Bayes Factor, BF,, = 33.8; Posterior probability: .97

Table 3. Mixed Logistic Model Coefficients for number of unique features per feature category

Location/ . Use/ . Personal
Context Deseription . HE Superordinate o

Fixed Effects Coef.(se) Coef.(s¢) Coefi(se)  Coef(se) Coef:(se)
Main effects of time  L3I(I1***  132(11%* 132(11%*%  134C1D#**  1L31(1)*
Main effects of condition  -0.64(.12)¥**  -0.63(12)"** -0.65(12)"**  -0.66(.12)*** -0.65(.12)"**
Main effeets of feature category 17(08)* 0.16(08)  0.27(.09)** 0.10(07) 0.15(08)
Aphasia Severity  .55(12)***  0.54(12)**% 0.53(I3)***  0.57C12FFF 0.56(13)*+*
Time*Condition -1.82(21)*** -1.83(21)*** -1.82(21)**  -183(21)*** -1.82(21)***
Time*features category  -0.015(.10) 0.10(1)  -0.06(.10) -0.14(.10) 0.05(.1)
Condition* feature category ~ -0.13(11)  022(11)  -0.09(11) 011CI) 01211
Time*condition*features category 0.19(.20) 021(20)  0.076(.20) 001(20)  -0.014(21)

Random Effects K 5 2 2 s

Participants 0 045 50 44 46
Items 055 0.58 56 55 57

Note. Excluding intercepts, Coef = estimation of the effect on naming accuracy in log odds, SE = standard
error * <.05 **<.01%%%<.00]
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